
Introduction to WebAssembly components
Radu Matei, December 2021

WebAssembly (or Wasm) is a W3C specification for a portable binary format for distributing and running

code that has been implemented in the four major browser engines since 2017. In familiar terms, Wasm

is used as a compilation target for various programming languages, generating a compact binary that can

run at near-native speeds in the browser. This brought existing languages such as Rust, C and C++, Go, or

C# (and new languages like Grain) to the web, and enabled porting extremely complex applications such

as Google Earth or Photoshop to the browser.

Despite the name, however, nothing in WebAssembly is specific to browsers — and in fact, the same

benefits that make it a compelling execution environment for browsers (such as near-native speed,

compact binary format, or sandbox isolation) make it well-suited for scenarios outside the browser, in

datacenters, clouds, or on the edge. The WASI project, or the WebAssembly System Interface, is a

proposal that aims to standardize the execution of Wasm outside the browser and to provide a common

(platform agnostic) layer and set of primitives that guest modules can use to interact with the underlying

runtime, while maintaining the secure sandbox promised by WebAssembly. (Lin Clark’s initial post

announcing the Bytecode Alliance does a fantastic job at explaining the goals of WASI.)

WebAssembly and WASI show great promise for the future of computing outside the browser — but

attempting to write any non-trivial WebAssembly application that tries to interoperate across runtime or

language boundaries requires significant effort today, and exchanging any non-fundamental data types

(such as strings or structures) involves pointer arithmetic and low-level memory manipulation.

The component model proposal aims to solve this issue, and this article will explain the goals of the

proposal and will showcase how to use the current tooling from the Bytecode Alliance to build and execute

such components in Rust and C++. (Note: The demo components, the implementations, the tools used,

and the developer experience showed here represent very early attempts to solve this, and future tooling

will improve it. This is shown for educational purposes, and should not be considered stable.)

The WebAssembly component model

Using an operating system analogy, WebAssembly allows the execution of low-level CPU instructions,

while WASI is a way to model input/output interfaces. From this perspective, the need for a “process

model” that defines how processes are started and how they interact with each other is starting to emerge

— this is what the WebAssembly component model proposal is trying to address.

The first stated goal of the component model is to define a portable, load- and run-time-efficient binary

format […] that enables portable, cross-language composition – effectively, addressing how multiple

components can interact with each other, and the use cases describe a wide range of scenarios for

embedding components, composition, and dynamic linking.

https://radu-matei.com/
https://webassembly.org/
https://webassembly.org/getting-started/developers-guide
https://grain-lang.org/
https://medium.com/google-earth/google-earth-comes-to-more-browsers-thanks-to-webassembly-1877d95810d6
https://web.dev/ps-on-the-web/
https://wasi.dev/
https://bytecodealliance.org/articles/announcing-the-bytecode-alliance
https://bytecodealliance.org/articles/announcing-the-bytecode-alliance
https://github.com/WebAssembly/component-model
https://bytecodealliance.org/
https://github.com/WebAssembly/component-model/blob/main/design/high-level/Goals.md

The main use case this article addresses is the following — defining an API layer as a WebAssembly

interface, implementing it as a WebAssembly component, then consuming it from other components by

passing arguments and return values. There are numerous other topics to explore in this area such as

transitive dependencies, distribution, developer experience, or building specialized host runtimes for a

given interface, all of which will be addressed in future articles.

Defining and implementing WebAssembly components

The goal is to build a component that can be imported from other WebAssembly modules, written in

potentially other programming languages, and the first step is defining its interface — what is the public

API this component will implement? This is done using WIT (WebAssembly Interface), an experimental

textual format used for defining Wasm interfaces. It is the next iteration of WITX, which itself is based on

the standard text format. (A non-trivial example of using the new WIT format can be found here.)

The component is going to be a simple key/value cache layer that gets, stores, and deletes arbitrary

payloads:

// cache.wit

// Type for cache errors.

enum error {

 runtime_error,

 not_found_error,

}

// Payload for cache values.

type payload = list<u8>

// Set the payload for the given key.

set: function(key: string, value: payload, ttl: option<u32>) -> expected<_, error>

// Get the payload stored in the cache for the given key.

get: function(key: string) -> expected<payload, error>

// Delete the cache entry for the given key.

delete: function(key: string) -> expected<_, error>

Let’s implement this interface in Rust, using the file system as storage for the cache:

$ cargo new --lib rust-wasi-impl

 Created library `rust-wasi-impl` package

Next, the only dependency needed is wit-bindgen-rust — a Bytecode Alliance project that generates Rust

bindings given a WIT interface:

// Cargo.toml

[lib]

 crate-type = ["cdylib"]

[dependencies]

 wit-bindgen-rust = { git = "https://github.com/bytecodealliance/wit-bindgen", rev =

"32e63116d469d8046727fae3c1333a7d35d0c5d3" }

https://github.com/WebAssembly/WASI/blob/main/docs/witx.md
https://webassembly.github.io/spec/core/text/index.html
https://github.com/bytecodealliance/wit-bindgen/blob/32e63116d469d8046727fae3c1333a7d35d0c5d3/tests/codegen/wasi-next/wasi_next.wit
https://github.com/bytecodealliance/wit-bindgen

The next section contains a simplified version of the actual implementation (note that the complete

implementation for all components can be found on GitHub). A very important part here is the

wit_bindgen_rust::export! procedural macro — it takes the interface file as input, and it automatically

generates Rust bindings for all the objects defined in the interface, bindings necessary to implement the

interface.

This is equivalent to using the wit-bindgen CLI to manually generate the bindings (to check in to source

control, or inspect):

$ wit-bindgen rust-wasm --export ../cache.wit

Generating "bindings.rs"

Inspecting the generated bindings, we can see the low-level code (that until now had to be manually

written) to handle passing non-fundamental data types between modules, with the canonical ABI

described in the interface types proposal.

Rust’s excellent macro support means the bindings can be dynamically generated from the interface at

build time. Regardless of how the bindings are generated, the main piece to implement here is a Rust trait

that models the API from the interface:

// lib.rs

wit_bindgen_rust::export!("../cache.wit");

struct Cache {}

impl cache::Cache for Cache {

 fn set(key: String, value: Payload, _: Option<u32>) -> Result<(), Error> {

 let mut file = File::create(path(&key)?)?;

 file.write_all(&value)?;

 Ok(())

 }

 fn get(key: String) -> Result<Payload, Error> {

 let mut file = File::open(path(&key)?)?;

 let mut buf = Vec::new();

 file.read_to_end(&mut buf)?;

 Ok(buf)

 }

 ...
}

(Note that at the time of writing this article, the convention for Rust implementations is that the struct

implementing the interface trait must have the same name (accommodating for snake_case) as the

interface file, hence struct Cache {}. There are also a few error handling specific parts omitted from the

snippet above, see complete implementation.)

The actual implementation is straightforward – store and retrieve keys/value pairs as files in the file

system (assuming this component has the capability to write to a filesystem).

https://github.com/radu-matei/wasm-components-example
https://github.com/WebAssembly/interface-types/pull/140
https://github.com/WebAssembly/interface-types/pull/140
https://doc.rust-lang.org/book/ch10-02-traits.html
https://github.com/radu-matei/wasm-components-example

At this point, the Wasm module can be built using the Rust toolchain. Then, using the translator from the

binary format to the text format (from this repo), we can see the module exports the three methods from

the interface, together with functions to adapt the arguments passed between boundaries (as described

by the canonical ABI):

$ cargo build --target wasm32-wasi --release

$ wasm2wat-rs target/wasm32-wasi/release/rust_wasi_impl.wasm | grep export

 (export "set" (func $set.command_export))

 (export "get" (func $get.command_export))

 (export "delete" (func $delete.command_export))

 (export "canonical_abi_realloc" (func $canonical_abi_realloc.command_export))

 (export "canonical_abi_free" (func $canonical_abi_free.command_export))

Importing WebAssembly interfaces in Rust and C++

The previous section defined an interface using WIT, then implemented it in Rust using the convenient

macros provided by wit-bindgen. This section will create two new components, in Rust and C++, which

will import the interface.

First, a new Rust executable with the same Cargo dependency as the previous component:

$ cargo new --bin rust-consumer

As in the previous Rust component, the main aspect here is the use of the wit_bindgen_rust::import

procedural macro — same as before, the macro takes the interface and generates Rust bindings, but

crucially, because this component imports the interface, the bindings will be different (they can be

inspected by executing wit-bindgen rust-wasm --import ../cache.wit):

wit_bindgen_rust::import!("../cache.wit");

fn main() {

 let key = "five-good-emperors";

 let value = "Nerva, Trajan, Hadrian, Pius, and Marcus Aurelius";

 cache::set(key, value.as_bytes(), None).unwrap();

 let ret = cache::get(key).unwrap();

 assert_eq!(ret, value.as_bytes());

}

The generated import bindings can be used in a very idiomatic way to set and retrieve information.

The important thing to note here is that the program above only needs the interface in order to compile,

as the generated WebAssembly module will contain imports for the cache functionality:

$ cargo build --target wasm32-wasi --release

$ wasm2wat-rs target/wasm32-wasi/release/rust-consumer.wasm | grep import

https://github.com/bytecodealliance/wasm-tools
https://github.com/WebAssembly/interface-types/pull/140

 (import "cache" "set" (func $rust_consumer_cache_set_wit_import (type 8)))

 (import "cache" "get" (func $rust_consumer_cache_get_wit_import (type 9)))

 (import "wasi_snapshot_preview1" "fd_write" (func $wasi_wasi_fd_write (type 10)))

Before actually linking and executing the main module above, it is worth exploring how to build another

consumer, this time in C++.

Because C++ doesn’t have the same macro system as Rust, the bindings need to be on disk at compile

time — using wit-bindgen,(and generating import bindings, as the C++ component will import the

interface), they are written into a bindings/ directory:

Makefile

bindgen:

 $(WIT_BINDGEN) c --import ../cache.wit --out-dir bindings

build:

 $(WASI_CC) -I . -I ./bindings -c -o cache.o bindings/cache.c

 $(WASI_CC) main.cpp cache.o -o cpp_consumer.wasm

At this point, the implementation is a C++ main program that uses the header file defined in

bindings/cache.h and calls the functions to get and set key/value pairs:

#include "bindings/cache.h"

int main(int argc, char **argv)

{

 char *key = "almost-consul";

 char *value = "Caligula's horse, Incitatus";

 printf("Writing contents `%s` in storage `%s`", value, key);

 cache_string_t *skey;

 skey->len = strlen(key);

 skey->ptr = key;

 cache_payload_t *svalue;

 svalue->len = strlen(value);

 svalue->ptr = (uint8_t *)value;

 cache_set(skey, svalue, NULL);

 cache_payload_t *ret;

 cache_get(skey, ret);

 printf("Retrieved from `%s`: `%s`", key, (char *)ret->ptr);

 assert(svalue->len == ret->len);

}

The rest of the implementation is adapting the character arrays where the key and value are stored into

the types expected by the interface. Finally, this can be compiled, and exploring the resulting module’s

imports, the same imports from a cache module can be seen:

$ make bindgen build

$ wasm2wat-rs cpp_consumer.wasm | grep import

 (import "wasi_snapshot_preview1" "proc_exit" (func $__wasi_proc_exit (type 2)))

 (import "cache" "set" (func $__wasm_import_cache_set (type 3)))

 (import "cache" "get" (func $__wasm_import_cache_get (type 4)))

Linking and executing components

The previous sections defined the interface, built an implementation for it, then imported the interface in

two Rust and C++ programs, resulting in two WebAssembly modules with imports that must be satisfied

before they can be instantiated. This section will link them with the actual component implementation

using wasmlink , a CLI that allows us to statically link a module and its dependencies using module linking

and the Canonical Interface Types ABI.

Starting with the C++ module that imports the interface, before executing it, its cache imports must be

satisfied — this is currently done manually using wasmlink:

link:

 $(WASMLINK) cpp_consumer.wasm \

 --interface cache=../cache.wit \

 --profile wasmtime \

 --module cache=../rust-wasi-impl/target/wasm32-wasi/release/rust_wasi_impl.wasm \

 --output linked.wasm

run:

 $(WASMTIME) --enable-module-linking --enable-multi-memory --mapdir=/cache::. linked.wasm

The link target uses the wasmlink CLI to supply the Rust implementation of the interface whenever the

cpp_consumer.wasm imports anything from the cache module. The linker is also generating WebAssembly

code responsible for adapting the data between the linear memories of each component, meaning that

no component can access another component’s memory directly, ensuring a “shared-nothing” approach.

The output of this target is a statically linked module that contains an inline copy of the Rust

implementation for the cache interface. (The various imports and exports of the final linked module can

be explored using wasm2wat-rs.)

https://github.com/bytecodealliance/wit-bindgen/tree/main/crates/wasmlink
https://github.com/bytecodealliance/wit-bindgen/tree/main/crates/wasmlink
https://github.com/WebAssembly/module-linking
https://github.com/WebAssembly/interface-types/pull/140

Finally, this can be run using Wasmtime (with support for the module linking and multi memory proposals

enabled, and with granting the module the ability to use the filesystem, where the cache implementation

stores its data):

$ make link run

wasmtime --enable-module-linking --enable-multi-memory --mapdir=/cache::. linked.wasm

Retrieved from `almost-consul`: `Caligula's horse, Incitatus`

The same commands can be run for the Rust consumer:

$ make link run

wasmtime --enable-module-linking --enable-multi-memory --mapdir=/cache::. linked.wasm

Retrieved from five-good-emperors: Nerva, Trajan, Hadrian, Pius, and Marcus Aurelius

Right now, linking is a manual operation, but as the tooling and language support evolves, this will be

significantly improved.

Conclusion

This article explored the new WebAssembly component model proposal and demonstrated a very early

way of using interfaces, building Rust and C++ components, linking, and running them with Wasmtime.

There is a great opportunity for improving the developer experience for building, consuming, and linking

Wasm component, and future articles will showcase the improvements done together with the

community, as well as other areas such as language toolchain integration, or the distribution of

components.

As more programming languages add WebAssembly as a compilation target, and as tooling is built that

automatically generates bindings for those programming languages, the component model will enable

true potable and cross-language composition for software.

	Introduction to WebAssembly components
	Radu Matei, December 2021
	The WebAssembly component model
	Defining and implementing WebAssembly components
	Importing WebAssembly interfaces in Rust and C++
	Linking and executing components
	Conclusion

