
TensorFlow inferencing using WebAssembly and
WASI

Radu Matei

October 18, 2020

As edge devices become more powerful, being able to perform inferencing on
trained neural network models without recompiling application components for
each architecture becomes important, and WebAssembly could serve as the
portable compilation target for such scenarios, running both in and outside
browser environments.

In this article, we experiment with building a Rust program that performs
image classification using the MobileNet V2 TensorFlow model, compile it to
WebAssembly, and instantiate the module using two WebAssembly runtimes
that use the WebAssembly System Interface (WASI), the native NodeJS WASI
runtime, and Wasmtime. A special is given to writing model and image data into
the module’s linear memory, with implementations in both JavaScript and Rust.
Finally, a simple prediction API is exemplified running on top of the Wasmtime
runtime, and some limitations of this approach are discussed.

The completed project can be found on GitHub.

TensorFlow, Rust, and WebAssembly

While there are still limitations to compiling some crates to WebAssembly, Rust
is a programming language with excellent support for Wasm. Additionally, there
is a Rust library that focuses on performing neural network model inferencing
from Rust - tract, from Sonos - and while the crate is very far from supporting
any arbitrary [TensorFlow] model, it can be used to run non-trivial models, and
the project has an excellent quick start example that shows how to perform
image classifications using the MobileNet V2 model, which will be used as a
starting point for our Wasm module:

let model = tract_tensorflow::tensorflow()
// load the model
.model_for_path("mobilenet_v2_1.4_224_frozen.pb")?
// specify input type and shape
.with_input_fact(

0,

1

https://webassembly.org/
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://wasi.dev
https://github.com/bytecodealliance/wasmtime
https://github.com/radu-matei/wasi-tensorflow-inference
https://github.com/sonos/tract
https://github.com/sonos/tract/tree/main/examples/tensorflow-mobilenet-v2
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet

InferenceFact::dt_shape(
f32::datum_type(),
tvec!(1, 224, 224, 3)

),
)
// make the model runnable and fix its inputs and outputs
.into_runnable()?;

// open image, resize it and make a Tensor out of it
let image = image::open("grace_hopper.jpg")?.to_rgb();
let image: Tensor = from_shape_fn(

(1, 224, 224, 3),
|(_, y, x, c)| {

resized[(x as _, y as _)][c] as f32 / 255.0
})
.into();

// run the model on the input
let result = model.run(tvec!(image))?;

Source code adapted from the Sonos Tract examples.

The program above loads the TensorFlow model from a file, opens and resizes
the target image to a resolution of 224 x 224 (which is the resolution of the
training images for the MobileNet model), runs the model, and prints the class of
the best prediction. Using Rust’s wasm32-wasi compilation target, the project
compiles to WebAssembly successfully, but executing it with Wasmtime (or any
other runtime) results in a panic:

$ wasmtime run tf-example.wasm --dir=.
'The global thread pool has not been initialized.:
ThreadPoolBuildError { kind: IOError(Custom
{ error: "operation not supported on this platform" })}'

Caused by:
0: failed to invoke `_start`

...
8: rayon_core::registry::global_registry
9: rayon_core::current_num_threads
12: jpeg_decoder::decoder::Decoder<R>::decode_internal
13: image::jpeg::decoder::JpegDecoder<R> as read_image
16: image::io::free_functions::open_impl
...

The runtime error is caused by the image crate attempting to use multiple
threads when loading the picture, and since there is no threads support in
WebAssembly (here is an early proposal), the program panics. Fortunately,
turning off all crate features except JPEG loading solves the problem:

2

https://github.com/sonos/tract/blob/main/examples/tensorflow-mobilenet-v2/src/main.rs
https://github.com/bytecodealliance/wasmtime
https://crates.io/crates/image
https://github.com/WebAssembly/threads

image = { ... default-features = false, features = ["jpeg"] }

Because the program assumes both the model and image are in the current
directory, we can use Wasmtime’s --dir flag to grant the module permission to
the current directory, and the program classifies the image as military uniform
with a confidence of 32% (654 is the index of the military uniform label in
the labels file of the model, and the image is that of Grace Hopper in uniform):

$ wasmtime run tf-example.wasm --dir=.
result: Some((0.32560226, 654))

However, getting the model and image from disk on every inference is not ideal,
since I/O operations can be costly. Additionally, we might need classify images
that are not on disk, but received by the runtime in some other ways (such as
HTTP requests). In short, we need to pass both model and image data from the
runtime to the module, using WebAssembly memory.

Using WebAssembly memory

Memory in WebAssembly is represented as a contiguous vector of uninterpreted
bytes, with the memory size being a multiple of 64Ki (the length of one memory
page). Lin Clark has an excellent explainer with code cartoons about WebAssem-
bly memory, and in short, we will use it to pass arbitrary data between the
Wasm runtime and guest modules.

Because the WebAssembly module is ultimately responsible for managing its
own linear memories, it must export functionality to allocate memory, which
the underlying host runtime can write into, and read from. In most cases, when
using code generation libraries such as wasm-bindgen, this is handled by the
library - but to better understand how everything works together, it is worth
building our module without wasm-bindgen.

Recall the task at hand - pass model and image data from the runtime into the
Wasm module’s memory. Because both model and image data can be represented
as arrays of 8-bit unsigned integers, we can write a single function, alloc, which
allocates memory for a new Vec<u8> with capacity len. Before returning, the
function calls mem::forget to take ownership of the memory block and ensure
the vector’s destructor is not called when the object goes out of scope. Finally,
the function returns the pointer to the start of the memory block.

/// Allocate memory into the module's linear memory
/// and return the offset to the start of the block.
#[no_mangle]
pub extern "C" fn alloc(len: usize) -> *mut u8 {

let mut buf = Vec::with_capacity(len);
let ptr = buf.as_mut_ptr();

std::mem::forget(buf);

3

https://webassembly.github.io/spec/core/syntax/modules.html#syntax-mem
https://hacks.mozilla.org/2017/07/memory-in-webassembly-and-why-its-safer-than-you-think/
https://github.com/rustwasm/wasm-bindgen
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.with_capacity
https://doc.rust-lang.org/std/mem/fn.forget.html

return ptr;
}

At this point, it is worth understanding how the WebAssembly module we are
writing should expect to get the pointers and length of the model and image
data - specifically, for each of the two input objects (model and image), the
module expects a pointer (offset relative to the start of its entire linear memory)
and the length of the object. Then, it uses Vec::from_raw_parts to create a
Vec<u8> with the respective length and capacity (equal to the length) for each
of the two objects:

/// This is the module's entry point for executing inferences.
/// It takes as arguments pointers to the start of the module's
/// memory blocks where the model and the image were copied,
/// as well as their lengths, meaning that callers of this
/// function must allocate memory for both the model and image
/// data using the `alloc` function, then copy it into the
/// module's linear memory at the pointers returned by `alloc`.
///
/// It retrieves the contents of the model and image, then calls
/// the `infer` function, which performs the prediction.
#[no_mangle]
pub unsafe extern "C" fn infer_from_ptrs(

model_ptr: *mut u8,
model_len: usize,
img_ptr: *mut u8,
img_len: usize,

) -> i32 {
let model_bytes = Vec::from_raw_parts(

model_ptr,
model_len,
model_len

);
let img_bytes = Vec::from_raw_parts(

img_ptr,
img_len,
img_len

);

return infer(&model_bytes, &img_bytes);
}

As the comment suggests, host runtimes will have to call the module’s alloc
function for each of the two input objects, get the respective pointers returned
by alloc, and copy the model and image data into the module’s linear memory.
Then, use the pointers and lengths to call infer_from_ptrs, which acts as the
entrypoint for our module.

4

https://doc.rust-lang.org/std/vec/struct.Vec.html#method.from_raw_parts

Finally, the only thing left to implement is the actual inference, which is similar
to the example we saw earlier, with the only difference that it now takes the
model and image data as arguments, rather than reading them from the file
system (hence the slight changes in loading them):

/// Perform the inference given the contents of the
/// model and the image, and return the index of the
/// predicted class.
fn infer(model_bytes: &[u8], image_bytes: &[u8]) -> i32 {

let mut model = std::io::Cursor::new(model_bytes);
let model = tract_tensorflow::tensorflow()

.model_for_read(&mut model)
...
let image = image::load_from_memory(image_bytes);
...
let result = model.run(tvec!(image));
...

}

We can now compile the code to the Rust wasm32-wasi target and get a We-
bAssembly module that can be instantiated and executed in any WASI compatible
runtime, and in the following section we will explore running it in Node’s WASI
runtime and Wasmtime.

The complete implementation can be found on GitHub.

Testing the module from Node’s WASI runtime

This section will not focus on instantiating the module, but rather on allocating
and copying the model and image data into the module’s memory, as well as
on invoking the inferencing function. For a guide on getting started with the
NodeJS WASI runtime, you can check the article I wrote in July.

First, we need a helper method that copies a byte array into the module’s
memory. The function takes as arguments the actual bytes to copy and an
instance of the module, calls the module’s exported alloc function, and copies
the bytes into the module’s memory, starting at ptr:

// write `bytes` into the memory of `instance`
function writeGuestMemory(bytes, instance) {

var len = bytes.byteLength;
// call the module's `alloc` function
var ptr = instance.exports.alloc(len);
// create an array of length `len` in the module's memory,
// starting at offset `ptr`
var m = new Uint8Array(instance.exports.memory.buffer, ptr, len);
// set the value of the array to `bytes`
m.set(new Uint8Array(bytes.buffer));

5

https://github.com/radu-matei/wasi-tensorflow-inference
https://radu-matei.com/blog/nodejs-wasi/

// return the offset
return ptr;

}

Now that we have a way of writing data into the module’s memory, we can use
it to finally get predictions on images. The function below takes as parame-
ters the contents of the MobilNet V2 model, the contents of an image, and a
WebAssembly instance, calls the writeGuestMemory function defined above for
each of the two objects we want to write into memory, then invokes the module’s
infer_from_ptrs exported function using the pointers to the objects and their
lengths as parameters. The return value of the infer_from_ptrs function is
the index of the predicted class - we use it together with the model’s labels file
in order to get a human-friendly description of the prediction:

// get a prediction given the MobileNet V2 model,
// an image, and an instance of the Wasm module
// that performs the inference.
function getPrediction(model_bytes, img_bytes, instance) {

// write the contents of the model and image
// in the memory of the module, using the
// module's `alloc`exported function
var mptr = writeGuestMemory(model_bytes, instance);
var iptr = writeGuestMemory(img_bytes, instance);

// invoke the module's exported `infer_from_ptrs`
// function using the pointers and lengths of
// the model and image, which returns an integer
// representing the index of the predicted class.
let pred = instance.exports.infer_from_ptrs(

mptr,
model_bytes.length,
iptr,
model_bytes.length

);

// helper function to read the prediction
// label from the index of the class
return getLabel(pred);

}

The GitHub repository of this project contains the complete logic for instantiating
the module, a compiled version of the WebAssembly module, the MobilNet V2
model, as well as a directory with a couple of images we can test:

$ node --experimental-wasi-unstable-preview1 \
--experimental-wasm-bigint \
test.js

predicting on file golden-retriever.jpeg

6

https://github.com/radu-matei/wasi-tensorflow-inference

inference time: 832 ms
prediction: golden retriever

predicting on file husky.jpeg
inference time: 541 ms
prediction: Eskimo dog, husky

The program correctly uses the MobileNet V2 computer vision model and the
WebAssembly module we wrote, and performs image classification on the test
images.

Building a Rust host runtime with Wasmtime

When first experimenting with compiling the module, we used the Wasmtime
CLI to quickly execute the module. This works great if the module needs to
access files, for example, but we now need to write into the module’s memory,
and we cannot achieve that using the CLI - we now have to use the Wasmtime’s
excellent API. First, we need to implement a Rust function which, given a
byte array and an instance of the WebAssembly module, writes the data into
the module’s memory - essentially the same functionality we implemented in
JavaScript in the previous section:

/// Write a byte array into the instance's linear memory
/// and return the offset relative to the module's memory.
fn write_guest_memory(

bytes: &Vec<u8>,
instance: &Instance

) -> Result<isize, anyhow::Error> {
// Get the "memory" export of the module.
// If the module does not export it, just panic, since
// we are not going to be able to copy any data.
let memory = instance

.get_memory(MEMORY)

.expect("expected memory not found");

// Get the guest's exported `alloc` function, and call
// it with the length of the byte array.
let alloc = instance

.get_func(ALLOC_FN)

.expect("expected alloc function not found");
let alloc_result = alloc.call(

&vec![Val::from(bytes.len() as i32)]
)?;

// The result is an offset relative to the module's
// linear memory, which is used to copy the bytes into
// the module's memory.

7

https://docs.rs/wasmtime/0.20.0/wasmtime/
https://docs.rs/wasmtime/0.20.0/wasmtime/

let guest_ptr_offset = match alloc_result
.get(0)
.expect("expected the result to have one value")

{
Val::I32(val) => *val as isize,
_ => return Err("guest pointer must be Val::I32"),

};

// Copy the desired bytes into the memory at `guest_ptr_offset`.
unsafe {

let raw = memory.data_ptr().offset(guest_ptr_offset);
raw.copy_from(bytes.as_ptr(), bytes.len());

}
return Ok(guest_ptr_offset);

}

We can now use the write_guest_memory function to implement getting a predic-
tion - given the contents of the model and an image, create a new WebAssembly
instance of the module using the Wasmtime API, write the contents of the model
and image into the guest’s memory, then invoke the invoke_from_ptrs function
from the WebAssembly module. Finally, use a simple helper function that gets
the index of the predicted class and return the human-friendly label of the class:

/// Get a prediction given the MobileNet V2 model and an image.
fn get_prediction(

model_bytes: Vec<u8>,
img_bytes: Vec<u8>

) -> Result<String, anyhow::Error> {
// Unfortunately, we have to create a new module
// instance for every prediction, since a
// `Wasmtime::Instance` cannot be safely sent between threads.
// See https://github.com/bytecodealliance/wasmtime/issues/793
let instance = create_instance(WASM.to_string())?;

// Write the MobileNet model and the image contents to
// the module's linear memory, and get their pointers.
let model_bytes_ptr = write_guest_memory(

&model_bytes,
&instance

)?;
let img_bytes_ptr = write_guest_memory(

&img_bytes,
&instance

)?;

// Get the module's "infer_from_ptrs" function,
// which is the entrypoint for our module.

8

let infer = instance
.get_func(INFER_FN)
.expect("expected inference function not found");

// Call the inference function with the pointer
// and length of the model contents and image.
let results = infer.call(&vec![

Val::from(model_bytes_ptr as i32),
Val::from(model_bytes.len() as i32),
Val::from(img_bytes_ptr as i32),
Val::from(img_bytes.len() as i32),

])?;

// The inference function has one return argument,
// the index of the predicted class.
match results

.get(0)

.expect("expected the result to have one value")
{

Val::I32(val) => {
let label = get_label(*val as usize)?;
return Ok(label);

}
_ => return Err("cannot get prediction"),

}
}

As the comment suggests, a Wasmtime::Instance cannot be sent across threads
(not in a memory-safe manner) - which means we cannot use the same instance in
a multi-threaded environment (for example when responding to HTTP requests).
The impact of this is that we pay the price of instantiating the module every
time we make an inference (which, for this specific WebAssembly module, and
tested on my hardware, can be around 600-800 milliseconds).

The two implementations of executing predictions (in JavaScript and Rust) are
very similar - we are essentially performing the same operations: create instance,
write data into memory, invoke inference function.

The complete implementation can be found on GitHub.

Creating a simple prediction API

Now that we are able to perform predictions using the module we built with
Wasmtime, we can easily expose this functionality over an HTTP API, using
the Rust hyper crate.

Running cargo run --release at the root of the GitHub repository of this
project, an HTTP server is started on port 3000 which expects an image URL as

9

https://github.com/bytecodealliance/wasmtime/issues/793
https://github.com/radu-matei/wasi-tensorflow-inference
https://docs.rs/hyper/0.13.8/hyper/
https://github.com/radu-matei/wasi-tensorflow-inference
https://github.com/radu-matei/wasi-tensorflow-inference

request body, downloads the image contents, gets a prediction using the method
described above, then returns its human-friendly label:

$ cargo run --release
Listening on http://127.0.0.1:3000

module instantiation time: 774.715145ms
inference time: 723.531083ms

In another terminal instance (or from an HTTP request builder, such as Post-
man):

$ curl --request GET 'localhost:3000' \
--header 'Content-Type: text/plain' \
--data-raw 'https://<url-to-a-retriever-puppy>.jpg'
golden retriever

For each request, the module instantiation and inference time are printed to
the console, and this is where not being able to share a Wasmtime::Instance
across threads affects the overall response time of the API we built. But as
WebAssembly and WASI mature, hardware devices (such as GPUs) will be
available in WebAssembly, and as proposals such as WASI-NN are implemented,
we can expect the both the instantiation and inference times to decrease.

In this article we experimented with compiling a Rust program that performs
inferencing on a pre-trained neural network to WebAssembly, and executed it in
NodeJS and Wasmtime, while closely exploring how the data is shared between
the host and guest using WebAssembly memory.

FAQ

• Should I use this in production? Probably not, as the code presented here
is experimental, using an approach mostly suited for educational purposes.

• How does this compare to the TensorFlow.js WebAssembly backend?
The Wasm backend for TensorFlow.js can only be used from JavaScript
environments, browsers and NodeJS. This means it can’t be used with
other WebAssembly runtimes. Check the official documentation for running
MobileNet in the browser, using the WebAssembly backend.

• How easily can I use my own model? While the approach used by this
project can be used to execute inferences using different neural network
models, the implementation is specialized for using the MobileNet V2
model, and changing the model architecture or its inputs would require
changes in the WebAssembly module and its instantiation.

10

https://www.w3.org/2020/06/machine-learning-workshop/talks/introducing_wasi_nn.html
https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html
https://github.com/tensorflow/tfjs/tree/master/tfjs-backend-wasm
https://github.com/tensorflow/tfjs/tree/master/tfjs-backend-wasm

	TensorFlow, Rust, and WebAssembly
	Using WebAssembly memory
	Testing the module from Node's WASI runtime
	Building a Rust host runtime with Wasmtime
	Creating a simple prediction API
	FAQ

